If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-16a+13=0
a = 1; b = -16; c = +13;
Δ = b2-4ac
Δ = -162-4·1·13
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{51}}{2*1}=\frac{16-2\sqrt{51}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{51}}{2*1}=\frac{16+2\sqrt{51}}{2} $
| -8=x=x+2 | | |×|/|x-3|=4 | | |x|/|x-3|=4 | | 0.4=5x^2 | | -5-(x+4)=-2x-14 | | -68=4m | | 4-3(-5x+2)=-5x+38 | | x+10=-32 | | -3x-1=-x-5 | | 8(2x+1=4(7x+7) | | k/5=-3.5 | | -6=v/20 | | 4y+15=20 | | x/4,5=6 | | 5x^2+10x=60 | | –8h=10−7h | | 243=131-u | | 6x+9=3+7x | | 3x(x-1/3)=2(2x-6) | | 2(x-2)=3x-12 | | 3.25/4=k | | -2a+1/2a=3/4 | | f(2)=-2+15 | | r+8.7=20.3 | | 5*(x-3)=30 | | -1022=f+322 | | 16/8x=24 | | -3g-5=13 | | m+12/4=5 | | B×=(×+4)b(-10) | | x+2x+x/2=126 | | 27t+5=86 |